反擊式水輪機
綜述
反擊式水輪機可分為混流式、軸流式、斜流式和貫流式。在混流式水輪機中,水流徑向進入導水機構,軸向流出轉輪;在軸流式水輪機中,水流徑向進入導葉,軸向進入和流出轉輪;在斜流式水輪機中,水流徑向進入導葉而以傾斜于主軸某一角度的方向流進轉輪,或以傾斜于主軸的方向流進導葉和轉輪;在貫流式水輪機中,水流沿軸向流進導葉和轉輪。 軸流式、貫流式和斜流式水輪機按其結構還可分為定槳式和轉槳式。定槳式的轉輪葉片是固定的;轉槳式的轉輪葉片可以在運行中繞葉片軸轉動,以適應水頭和負荷的變化。
各種類型的反擊式水輪機都設有進水裝置,大、中型立軸反擊式水輪機的進水裝置一般由蝸殼、固定導葉和活動導葉組成。蝸殼的作用是把水流均勻分布到轉輪周圍。當水頭在40米以下時,水輪機的蝸殼常用鋼筋混凝土在現場澆注而成;水頭高于40米時,則常采用拼焊或整鑄的金屬蝸殼。 在反擊式水輪機中,水流充滿整個轉輪流道,全部葉片同時受到水流的作用,所以在同樣的水頭下,轉輪直徑小于沖擊式水輪機。它們的最高效率也高于沖擊式水輪機,但當負荷變化時,水輪機的效率受到不同程度的影響。
反擊式水輪機都設有尾水管,其作用是:回收轉輪出口處水流的動能;把水流排向下游;當轉輪的安裝位置高于下游水位時,將此位能轉化為壓力能予以回收。對于低水頭大流量的水輪機,轉輪的出口動能相對較大,尾水管的回收性能對水輪機的效率有顯著影響。 軸流式水輪機
適用于較低水頭的電站。在相同水頭下,其比轉數較混流式水輪機為高。 軸流定槳式水輪機的葉片固定在轉輪體上。一般安裝高度在3-50m。,葉片安放角不能在運行中改變,結構簡單,效率較低,適用于負荷變化小或可以用調整機組運行臺數來適應負荷變化的電站。 軸流轉槳式水輪機是奧地利工程師卡普蘭在1920年發(fā)明的,故又稱卡普蘭水輪機。一般安裝高度在3-80m。其轉輪葉片一般由裝在轉輪體內的油壓接力器操作,可按水頭和負荷變化作相應轉動,以保持活動導葉轉角和葉片轉角間的最優(yōu)配合,從而提高平均效率,這類水輪機的最高效率有的已超過94%。典型例子就是葛洲壩。 貫流式水輪機
的導葉和轉輪間的水流基本上無變向流動,加上采用直錐形尾水管,排流不必在尾水管中轉彎,所以效率高,過流能力大,比轉數高,特別適用于水頭為3~20米的低水頭小型河床電站。
這種水輪機裝在潮汐電站內還可以實現雙向發(fā)電。這種水輪機有多種結構,使用最多的是燈泡式水輪機。 燈泡式機組的發(fā)電機裝在水密的燈泡體內。其轉輪既可以設計成定槳式,也可以設計成轉槳式。其中又可以細分為貫流式和半貫流式。世界上最大的燈泡式水輪機(轉槳式半貫流)裝在美國的羅克島第二電站,水頭12.1米,轉速為85.7轉/分,轉輪直徑為7.4米,單機功率為54兆瓦,于1978年投入運行。 混流式水輪機
是世界上使用最廣泛的一種水輪機,由美國工程師弗朗西斯于1849年發(fā)明,故又稱弗朗西斯水輪機。與軸流轉槳式相比,其結構較簡單,運行穩(wěn)定,最高效率也比軸流式的高,但在水頭和負荷變化大時,平均效率比軸流轉槳式的低,這類水輪機的最高效率有的已超過95%。混流式水輪機適用的水頭范圍很寬,為5~700米,但采用最多的是40~300米。 混流式的轉輪一般用低碳鋼或低合金鋼鑄件,或者采用鑄焊結構。為提高抗汽蝕和抗泥沙磨損性能,可在易氣蝕部位堆焊不銹鋼,或采用不銹鋼葉片,有時也可整個轉輪采用不銹鋼。采用鑄焊結構能降低成本,并使流道尺寸更精確,流道表面更光滑,有利于提高水輪機的效率,還可以分別用不同材料制造葉片、上冠和下環(huán)。典型例子是我國的劉家峽。 斜流式水輪機
是瑞士工程師德里亞于1956年發(fā)明,故又稱德里亞水輪機。其葉片傾斜的裝在轉輪體上,隨著水頭和負荷的變化,轉輪體內的油壓接力器操作葉片繞其軸線相應轉動。它的最高效率稍低于混流式水輪機,但平均效率大大高于混流式水輪機;與軸流轉槳水輪機相比,抗氣蝕性能較好,飛逸轉速較低,適用于40~120米水頭。 由于斜流式水輪機結構復雜、造價高,一般只在不宜使用混流式或軸流式水輪機,或不夠理想時才采用。這種水輪機還可用作可逆式水泵水輪機。當它在水泵工況啟動時,轉輪葉片可關閉成近于封閉的圓錐因而能減小電動機的啟動負荷。